sexta-feira, 30 de agosto de 2019

efeito Peltier (também conhecido como força eletromotriz de Peltier) é a produção de um gradiente de temperatura na junção de dois condutores (ou semicondutores) de materiais diferentes quando submetidos a uma tensão elétrica em um circuito fechado.
A energia térmica dissipada/absorvida é proporcional à corrente elétrica que percorre o sistema[1], sendo possível assim definir o calor associado pelo efeito com a seguinte equação:
[2]
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde:
  •  é calor associado;
  •  é o coeficiente de Peltier;
  •  é a corrente elétrica no sistema;
Por ser o reverso do efeito Seebeck, em que ocorre produção de diferença de potencial devido à diferença de temperatura, é possível definir o calor associado no efeito Peltier em termos do coeficiente de Seebeck com a seguinte equação:
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde:
  •  é o coeficiente de Seebeck;
  •  é a temperatura absoluta do sistema;
Estes dois efeitos podem ser também considerados como um só e denominado de efeito Peltier-Seebeck ou efeito termelétrico. Na verdade, são dois efeitos que podem ser considerados como diferentes manifestações do mesmo fenômeno físico.



O coeficiente de Joule-Thomson[editar | editar código-fonte]

Coeficientes de Joule-Thomson para vários gases à pressão atmosférica.
A taxa de variação da temperatura T em relação à pressão P em um processo de Joule-Thomson (isto é, à entalpia constante H) é o coeficiente de Joule-Thomson . Este coeficiente pode ser expresso em termos do volume V do gás, da sua capacidade térmica à pressão constante  e de seu coeficiente de expansão térmica  como:[1][3][7]
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Veja a dedução do coeficiente de Joule-Thomson (Kelvin) abaixo, para a demonstração desta relação. O valor de  é normalmente expresso em °C/bar (SI units: K/Pa) e depende do tipo de gás, da temperatura e da pressão do gás antes da expansão. A sua dependência com a pressão normalmente é apenas uma pequena percentagem para pressões até 100 bar.
Todos os gases reais têm um ponto de inversão no qual o valor de  muda de sinal. A temperatura ndeste ponto, a temperatura de inversão de Joule-Thomson, depende da pressão do gás antes da expansão.
Numa expansão a pressão diminui, assim o sinal de  é negativo por definição. Com isso em mente, a tabela a seguir mostra quando o efeito Joule-Thomson resfria ou aquece um gás real:
Se a temperatura do gás estáentão  édesde que  éassim  deve serlogo o gás
abaixo da temperatura de inversãopositivosempre negativonegativoé resfriado
acima da temperatura de inversãonegativosempre negativopositivoé aquecido
Hélio e hidrogênio são dois gases cujas temperaturas de inversão de Joule-Thomson a uma pressão de 1 atm são muito baixas (por exemplo, cerca de 51 K (-222 °C) para o hélio). Assim, o hélio e o hidrogênio aquecem-se quando expandem-se à entalpia constante à temperatura ambiente típica. Por outro lado, o nitrogênio e o oxigênio, os dois gases mais abundantes na atmosfera, têm temperaturas inversão de 621 K (348 °C) e 764 K (491 °C), respectivamente: estes gases podem ser resfriados à temperatura ambiente pelo efeito Joule-Thomson.[1]
Para um gás ideal,  é sempre igual a zero: gases ideais nem se aquecem nem se resfriam ao serem expandidos à entalpia constante.

Aplicações[editar | editar código-fonte]

Na prática, o efeito Joule-Thomson é realizado permitindo-se que o gás se expanda através de um dispositivo de estrangulamento (normalmente uma válvula), que deve estar muito bem isolado para impedir qualquer transferência de calor para ou pelo gás. Nenhum trabalho externo é extraído do gás durante a expansão (o gás não deve ser expandido através de uma turbina, por exemplo).
O efeito é aplicado com a técnica de Linde como um processo padrão na indústria petroquímica, onde a refrigeração é utilizada para liquefazer gases, e também em várias aplicações criogênicas (por exemplo, para a produção de oxigênio, nitrogênio, e argônio líquidos). Apenas quando o coeficiente de Joule-Thomson para o gás na determinada temperatura é maior que zero o gás pode ser liquefeito a essa temperatura pelo ciclo de Linde. Em outras palavras, um gás deve estar abaixo da sua temperatura de inversão para ser liquefeito pelo ciclo de Linde. Por esta razão, o ciclo de Linde simples normalmente não pode ser utilizado para liquefazer hélio, hidrogênio e neônio.

Demonstração de que a entalpia permanece constante em um processo de Joule-Thomson[editar | editar código-fonte]

Em um processo de Joule-Thomson a entalpia permanece constante. Para demonstrar isso, o primeiro passo é calcular o trabalho líquido realizado pelo gás que se move através da válvula. Suponha que o gás tem um volume V1 na região à pressão P1 (região 1) e um volume V2 quando ele chega à região à pressão P2 (região 2). Então o trabalho realizado sobre o gás pela fração de gás na região 1 é P1V1. Na região 2, o trabalho realizado pelo gás é P2V2. Assim, o trabalho total realizado pelo gás é
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
A variação na energia interna mais o trabalho realizado pelo gás é, pela primeira lei da termodinâmica, a quantidade total de calor absorvido pelo gás (aqui supõe-se que não há variação na energia cinética). No processo de Joule-Thomson, o gás é mantido isolado, de forma que nenhum calor é absorvido. Isso significa que
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde  e  denotam a energia interna do gás nas regiões 1 e 2, respectivamente.
Utilizando a definição de entalpia , a equação acima implica que:
onde  e  denotam a entalpia do gás nas regiões 1 e 2, respectivamente.

Dedução do coeficiente de Joule–Thomson[editar | editar código-fonte]

É uma dedução da expressão
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
para o coeficiente de Joule–Thomson.
A derivada parcial de T em relação a P a H constante pode ser calculada expressando-se a entalpia diferencial dH em termos de dT e dP, e igualando-se a expressão resultante a zero e resolvendo-se para a razão entre dT e dP.
Segue da relação termodinâmica fundamental que a diferencial da entalpia e dada por:
 (aqui  é a entropia do gás).
Expressando dS em termos de dT e dP, temos:
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Usando
 (ver Calor específico), podemos escrever:
A derivada parcial de S restante pode ser expressa em termos do coeficiente de expansão térmica através de uma relação de Maxwell, como se segue. A partir da relação termodinâmica fundamental, segue-se que a diferencial da energia de Gibbs é dada por:
A simetria entre as derivadas parciais de G em relação a T e P implica que:
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde  é o coeficiente de expansão térmica. Usando esta relação, a diferencial de H pode ser expressa como
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Igualando dH a zero e resolvendo para dT/dP, obtemos finalmente:
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
É fácil verificar que para um gás ideal o coeficiente de expansão térmica  é , e assim um gás ideal não sente o efeito Joule-Thomson. O resfriamento de um gás por uma expansão isentrópica pura não é o resfriamento de Joule-Thomson, embora isso seja às vezes erroneamente chamado de resfriamento Joule-Thomson por alguns profissionais experimentais.


Princípios Físicos[editar | editar código-fonte]

O princípio termoelétrico dos termopares deriva de uma propriedade física dos condutores metálicos submetidos a um gradiente térmico em suas extremidades: a extremidade mais quente faz com que os elétrons dessa região tenham maior energia cinética e se acumulem no lado mais frio, gerando uma diferença de potencial elétrico entre as extremidades do condutor na ordem de alguns milivolts (mV).
Princípio Físico de um Condutor Metálico Submetido a um Gradiente de Temperatura
Na figura acima o valor da força eletro motriz  depende da natureza dos materiais e do gradiente de temperatura nos mesmos. Quando o gradiente de temperatura é linear, a diferença de potencial elétrico  depende apenas do material e das temperaturas  e , (), formalmente representado pela fórmula:
onde S é o coeficiente termodinâmico de Seebeck,  é a diferença de temperatura  e  é a diferença de potencial elétrico usualmente medido em milivolts em função da diferença de temperatura (mV/°C).
Quando dois condutores metálicos A e B de diferentes naturezas são acoplados mediante um gradiente de temperatura, os elétrons de um metal tendem a migrar de um condutor para o outro, gerando uma diferença de potencial elétrico num efeito semelhante a uma pilha eletroquímica. Esse efeito é conhecido como Efeito Seebeck sendo capaz de transformar energia térmica em energia elétrica com base numa fonte de calor mediante propriedades físicas dos metais.
Princípio Físico de um Termopar Metálico Submetido a um Gradiente de Temperatura
A figura acima representa dois metais acoplados num dispositivo termopar do tipo T (Cu 100 %; Constantan, Cu 55 %, Ni 45 %). Quando associamos dois metais num termopar, a força eletro motriz gerada é:
onde SA e SB são os coeficientes de Seebeck dos metais A e B, T1 e T2 representam a diferença de temperatura na junção dos materiais. Os coeficientes de Seebeck são não-lineares e dependem da temperatura absoluta, material, e da estrutura molecular. Se os coeficientes de Seebeck podem ser considerados efetivamente constantes numa certa gama de temperatura, a fórmula acima pode ser aproximada por:
Desse modo é possível obter-se energia elétrica usando-se uma fonte de calor.